

The Benzylthio-Pyrimidine U-31,355, a Potent Inhibitor of HIV-1 Reverse Transcriptase

Irene W. Althaus, Kuo-Chen Chou,* Richelle J. Lemay, Kellie M. Franks, Martin R. Deibel, Ferenc J. Kezdy, Lionel Resnick,† Mariano E. Busso,‡ Antero G. So,‡ Kathleen M. Downey,‡ Donna L. Romero, Richard C. Thomas, Paul A. Aristoff, W. Gary Tarpley and Fritz Reusser UPJOHN LABORATORIES, KALAMAZOO, MI 49007-4940, U.S.A.

ABSTRACT. U-31,355, or 4-amino-2-(benzylthio)-6-chloropyrimidine is an inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) and possesses anti-HIV activity in HIV-1-infected lymphocytes grown in tissue culture. The compound acts as a specific inhibitor of the RNA-directed DNA polymerase function of HIV-1 RT and does not impair the functions of the DNA-catalyzed DNA polymerase or the RNase H of the enzyme. Kinetic studies were carried out to elucidate the mechanism of RT inhibition by U-31,355. The data were analyzed using Briggs-Haldane kinetics, assuming that the reaction is ordered in that the template:primer binds to the enzyme first, followed by the addition of dNTP, and that the polymerase is a processive enzyme. Based on these assumptions, a velocity equation was derived that allows the calculation of all the essential forward and backward rate constants for the reactions occurring between the enzyme, its substrates, and the inhibitor. The results obtained indicate that U-31,355 acts as a mixed inhibitor with respect to the template:primer and dNTP binding sites associated with the RNA-directed DNA polymerase domain of the enzyme. The inhibitor possessed a significantly higher binding affinity for the enzyme-substrate complexes than for the free enzyme and consequently did not directly affect the functions of the substrate binding sites. Therefore, U-31,355 appears to impair an event occurring after the formation of the enzyme-substrate complexes, which involves either inhibition of the phosphoester bond formation or translocation of the enzyme relative to its template:primer following the formation of the ester bond. Moreover, the potency of U-31,355 depends on the base composition of the template:primer in that the inhibitor showed a much higher binding affinity for the enzyme–poly (rC):(dG) $_{10}$ complexes than for the poly (rA):(dT) $_{10}$ complexes. BIOCHEM PHAR-MACOL 51;6:743-750, 1996.

KEY WORDS. HIV-1 reverse transcriptase; non-nucleoside inhibitors; inhibition kinetics

Several classes of non-nucleoside HIV-1 RT§ inhibitors have been described recently. These include the bis(heteroaryl)piperazines or BHAPs [1–8]; the dipyridodiazepinones [9, 10]; the benzodiazepines or TIBO compounds [11, 12]; the pyridinones [13]; the quinoline U-78,036 [14]; polysulfates and polysulfonates [15–25]; the α -anilinophenylacetamide derivatives [26]; and the HEPT (Fig. 1) or its derivatives [27, 28]. U-31,355 (Fig. 1) bears some structural similarity with this last class of compounds. It differs from the above-mentioned HEPT derivatives within the heterocylic moiety in that it

The current report presents data on the antiviral activity of U-31,355 in HIV-infected lymphocytes grown in tissue culture and enzymatic inhibition kinetic studies, using recombinant HIV-RT to examine the specific inhibition pattern of U-31,355 on the RNA-directed DNA polymerase function of HIV-1 RT.

MATERIALS AND METHODS

The expression of HIV-1 RT and its purification have been described [29, 30]. The enzyme was devoid of *Escherichia coli* RNase H activity and consisted of p51/p66 heterodimers as evidenced by gel electrophoresis.

The synthetic templates, primers and template:primers

contains a substituted pyrimidine, whereas the HEPT compounds contain thymine or uracil. In regard to the sulfur substituents, the HEPT compounds contain a phenylthio group, whereas U-31,355 contains a benzylthio group. U-31,355 is an inhibitor of HIV-1 RT and has antiviral activity at nontoxic doses in experimentally HIV-1 infected lymphocytes grown in tissue culture.

^{*} Corresponding author: Dr. Kuo-Chen Chou, Computer-Aided Drug Discovery, Upjohn Laboratories, Kalamazoo, MI 49007-4940. Tel. (616) 385-6867; FAX (616) 385-8488.

[†] Current address: Arthur Godfrey Rd., Suite 100, Miami Beach, FL 33140. ‡ Current address: University of Miami, Miami, FL 33101.

[§] Abbreviations: HIV-1 RT, human immunodeficiency virus type 1 reverse transcriptase (EC 2.7.7.49); HIV-2 RT, HIV-2 human immunodeficiency virus type 2 reverse transcriptase; RNase H, HIV-1 ribonuclease H (EC 3.1.26.4); HEPT, 1-[(2-hydroxyethoxyl)-methyl]-6-(phenylthio)thymine; U-31,355, 4-amino-2-(benzylthio)-6-chloro-pyrimidine; and E-EPU, 1-ethoxymethyl-5-ethyl-6-(phenylthio)uracil.

Received 1 August 1995; accepted 31 October 1995.

744 I. W. Althaus et al.

FIG. 1. Chemical structures of U-31,355, HEPT, and E-EPU.

poly(rA), (dT)₁₀, poly(rC), (dG)₁₀, and poly(dC):(dG)₁₂₋₁₈ were purchased from Pharmacia (Piscataway, NJ). α -³⁵S-Labeled dTTP and dGTP were purchased from Dupont NEN (Wilmington, DE). Nonidet P-40 was purchased from Sigma (St. Louis, MO).

The standard reaction mixtures for the HIV-1 RT RNA-directed DNA polymerase assay contained 20 mM dithiothreitol, 60 mM NaCl, 0.05% Nonidet P-40, 10 mM MgCl₂, 50 mM Tris·HCl, pH 8.3, a 10 μ M concentration of the cognate α - 35 S-labeled deoxyribonucleotide-5′-triphosphate (final specific activity 1 Ci/mmol), 10 μ g/mL of RNA template [poly(rA) or poly(rC)], 5 μ g/mL of the appropriate primer (dT)₁₀ or (dG)₁₀, and 0.0274 μ M HIV RT. The total volume of the reaction mixtures was 50 μ L. The samples were incubated at 37° for 15 min. The reactions were terminated by the addition of equal volumes of 10% trichloroacetic acid. Incorporation of radiolabeled precursor was determined by collecting the precipitates on glass fiber filters, drying, and counting the samples.

The DNA-directed DNA polymerase activity of the HIV-1 RT enzyme was assessed as described above for the RNA-directed DNA polymerase assay. The synthetic template: primer used was $poly(dC):(dG)_{12-18}$ (1:1 by weight), present at a concentration of 10 μ g/mL.

The RNase H assay was conducted as described [31]. In general, the assay follows the loss of trichloroacetic acid precipitable radiolabeled RNA:DNA hybrid as a function of time. The specific assay mixtures contained 2.5 μg and 2 $\mu Ci/mL$ of [3H]poly (rG):poly (dC) (1:1 by weight), 50 mM Tris·HCl, pH 8.5, 5 mM MgCl₂, 0.02% Nonidet P-40, and 3% glycerol. Incubation was for 10 min at 25°, and the reactions were terminated by the addition of equal volumes of 10% trichloroacetic acid. The loss of substrate was determined by collecting the precipitates on glass filters, drying, and counting the samples.

The infectivity assays in HIV-infected lymphocytes grown in culture were carried out by the syncytia reduction method [32] or by measuring the total amount of core p24 protein released into the culture medium and the total amount of viral RNA synthesized; the exclusion of trypan blue was used to

assess cell toxicity [28]. DNA polymerases α and δ were purified from fetal calf thymus and assayed in the absence of proliferating cell nuclear antigen as described [33].

The avian myoblastoma and murine leukemia virus RT preparations were purchased from GIBCO BRL (Gaithersburg, MD). These enzymes were assayed in the same standard reaction mixture as described above for the HIV RT. Sufficient amounts of the latter RT species were added per reaction mixture to incorporate approximately 0.04 nmol of dNTP in 15 min at 37°.

Michaelis-Menten kinetics, which are based on the establishment of a rapid equilibrium between the enzyme, its substrates, and the inhibitor, and the various enzyme-substrate complexes proved inadequate for the analysis of the kinetic data. The data were thus analyzed applying steady-state Briggs-Haldane kinetics as described previously [6] using Chou's graph theory of enzyme kinetics [34, 35]. The HIV RT catalyzed system considered here consists of two substrates, S₁, representing the template:primer, and S2, representing the dNTP, and I, an inhibitor. Since the system is ordered in that the binding of S_1 to E precedes the binding of S_2 , the system can be simplified significantly. Furthermore, the reactions between the inhibitor and the enzyme and various enzyme-substrate complexes are assumed to be diffusion-controlled [36-38], and the interconversion rates between E and EI, ES, and EIS₁, and ES₁S₂, and EIS₁S₂, respectively, can be expected to occur much faster than those between the enzyme and its substrates. Thus, although the whole system is a steady-state one, there is an equilibrium between the low molecular weight inhibitor and the enzyme and the enzyme-substrate complexes [39]. The whole system can be expressed as shown in Fig. 2, and the specific rate constants used in the following equations are defined in this figure. The equilibrium constants K_0 , K_1 , and K_2 , respectively, are given by:

$$K_0 = \frac{[E][I]}{[EI]}, K_1 = \frac{[ES_1][I]}{[EIS_1]}, K_2 = \frac{[ES_1S_2][I]}{[EIS_1S_2]}$$
 (1)

For such a simplified system the rate of product formation is given by the velocity (equation 2) [see Refs. 6, 7, 14, and 40 for a review)

$$\frac{d[P]}{dt} = \frac{k_{12}k_{23}(k_{2p}K_2 + k'_{+2p}[I])/(K_2 + [I])}{k_{32}k_{21} + k_{12}k_{32} + k_{12}k_{23}} e_0$$
 (2)

where

$$k_{12} = \frac{(k_1 K_0 + k'_{+1}[I])[S_1]}{K_0 + [I]}$$

$$k_{21} = \frac{k_{-1} K_1 + k'_{-1}[I]}{K_1 + [I]}$$

$$k_{23} = \frac{(k_2 K_1 + k'_{+2}[I])[S_2]}{K_1 + [I]}$$

$$k_{32} = \frac{(k_{-2s} + k_{2p})K_2 + (k'_{-2s} + k'_{+2p})[I]}{K_2 + [I]}$$
(3)

FIG. 2. Steady-state reaction scheme for HIV RT. E = enzyme; $S_1 = \text{template:primer}$; $S_2 = \text{dNTP}$; K_0 , K_1 , $K_2 = \text{equilibrium constants between the inhibitor (I), the enzyme, and its substrates; <math>EP = \text{enzyme-product complex}$; and EIP = enzyme-inhibitor-product complex.

RESULTS Antiviral Activity

U-31,355 is an inhibitor of HIV-1 RT and has yielded IC50 values from 56 to 83 µM in the initial screening tests in the poly (rA):(dT)₁₀-directed enzymatic assay system described under Materials and Methods. The agent possesses antiviral activity at nontoxic doses in HIV-1 infected lymphocytes grown in tissue culture. In the syncytia reduction assay, using MT-2 cells infected with HIV-1 (IIIb isolate), the 1C₅₀ value was between 0.4 and 4 μM U-31,355, and the IC₅₀ in terms of toxicity to the host cells was >16 µM inhibitor (Table 1). In the p24 and total viral RNA synthesis assays carried out in HIV-1 (D34 isolate)-infected peripheral blood mononuclear cells, the 1050 values in terms of p24 core protein released and total viral RNA synthesized were between 0.1 and 1 µM U-31,355 at both day 3 and day 4 post-infection of the cells (Table 2). Total viral RNA synthesis was suppressed completely at an inhibitor concentration of 10 µM. No severe toxic effects on the host cells were observed at 10 µM U-31,355. No inhibition of the cellular polymerases α and δ was observed at concentrations up to 398 µM. These concen-

TABLE 1. Antiviral activity of U-31,355 in the syncytia reduction assay (in HIV-1-infected MT-2 cells)

Sample	No. of syncytia/plate
Control	59
U-31,355	
39.7 μΜ	0
3.97 μΜ	0
0.397 μΜ	56

trations were significantly above the ones required to inhibit HIV-1 RT to the same extent (50–80 μ M).

RNA-Dependent DNA Polymerase

This function was studied in the presence of various concentrations of poly (rA):(dT)₁₀ and fixed concentrations of dTTP and vice versa in the presence of different concentrations of dTTP and a fixed concentration of template:primer. Three inhibitor concentrations were used in addition to controls containing no U-31,355. Each sample was run in duplicate, and each experiment thus yielded a total of sixty-four data points for analysis. The analysis of the kinetic data was carried

TABLE 2. Antiviral activity of U-31,355 in HIV-1-infected peripheral blood mononuclear cells

Sample	% Inhibition of p24 synthesis	% Inhibition of HIV RNA synthesis	Cell viability (% of control)
Day 3			
U-31,355 10 μM 1 μM 0.1 μM 0.01 μM Day 4	100 87 7.1 0	100 ND* ND ND	88 100 100 100
U-31,355 10 µM 1 µM 0.1 µM 0.01 µM	100 73 0 0	100 ND ND ND	88 100 100 100

^{*} ND = no data.

746 1. W. Althaus et al.

out with a computer using the steady-state kinetic scheme described under Materials and Methods. The experimental data were fitted to equation 2, and the thirteen kinetic parameters defined in Fig. 2 were calculated from this equation. The experimental results are shown in Fig. 3 and the calculated essential forward and backward reaction rates and equilibrium constants of the system in Fig. 4.

For the association constant, k_1 , and the corresponding dissociation rate constant, k_{-1} , of the enzyme-poly(rA):(dT)₁₀ complex, values of 4.6×10^4 M⁻¹ sec⁻¹ and 0.3 sec⁻¹ were calculated for the control reactions in the absence of the inhibitor. In the presence of U-31,355, the corresponding values were $2.8 \times 10^4 \text{ M}^{-1} \text{ sec}^{-1}$ for k'_1 and 0.3 sec^{-1} for k'_{-1} . The forward rate constant, k_2 , for the attachment of dTTP to the enzyme-poly(rA):(dT)₁₀ complex was $3.7 \times 10^4 \text{ M}^{-1} \text{ sec}^{-1}$. The backward rate constant, k_{-2s} , representing the dissociation rate of the ternary enzyme-poly(rA):(dT)₁₀-dTTP complex was 0.8 sec⁻¹. The corresponding values in the presence of U-31,355 were: $k'_2 = 2.8 \times 10^4 \text{ M}^{-1} \text{ sec}^{-1}$, and $k'_{-2s} = 0.2$ \sec^{-1} . The turnover number k_{2p} , representing k_{cat} , was 1 \sec^{-1} in the control reaction and the corresponding value, k'_{2p} , in the presence of the inhibitor was essentially 0. The respective inhibition constants or K_i values calculated for the enzyme (K_0) , the enzyme-poly(rA): $(dT)_{10}$ (K_1) , and the enzymepoly(rA): $(dT)_{10}$ -dTTP (K_2) complexes with the inhibitor U-31,355 were 88, 42 and 47 µM U-31,355. The overall

fitting error for the analysis was 0.98×10^{-4} . The equilibrium constants K_{0, K_1} , and K_2 , reflect the binding affinity between the inhibitor and the enzyme or the enzyme–substrate complexes. The value for K_0 was nearly twice as large as the values for K_1 and K_2 , and this indicates that U-31,355 binds much tighter to both the enzyme–poly(rA):(dT)₁₀ and enzyme–poly(rA):(dT)₁₀–DTTP complexes than to the free enzyme.

Similar experiments were carried out with the homopolymeric template:primer poly(rC):(dG)₁₀ and the cognate nucleotide dGTP. The experimental results are given in Fig. 5, and the calculated values for the rate and equilibrium constants are shown in Fig. 6. The calculated forward rate constant, k_1 , for the formation of the enzyme-poly(rC):(dG)₁₀ complex was $5.6 \times 10^4 \,\mathrm{M}^{-1} \,\mathrm{sec}^{-1}$ and the corresponding backward rate, k_{-1} , was 0.25 sec⁻¹. In the presence of the inhibitor, k'_1 , which is used to assess the formation of the ternary enzyme-U-31,355-poly(rC):(dG)₁₀ complex, was $3 \times 10^4 \text{ M}^{-1}$ \sec^{-1} , and the value for k'_{-1} , the reverse reaction, was 0.2 sec⁻¹. Moreover, the forward reaction rate for the formation of the enzyme-poly(rC):(dG)₁₀-dGTP complex, k_2 , was 3.7 × $10^4 \,\mathrm{M}^{-1} \,\mathrm{sec}^{-1}$ and the backward rate, k_{-2s} , was $0.8 \,\mathrm{sec}^{-1}$. In the presence of the inhibitor U-31,355, k'_{2} , the rate constant for the formation of the quaternary enzyme-U-31,355-poly-(rC): $(dG)_{10}$ -dGTP complex, was $0.9 \times 10^4 M^{-1} sec^{-1}$ and the corresponding reverse rate constant, k'_{-2s} , for this complex was

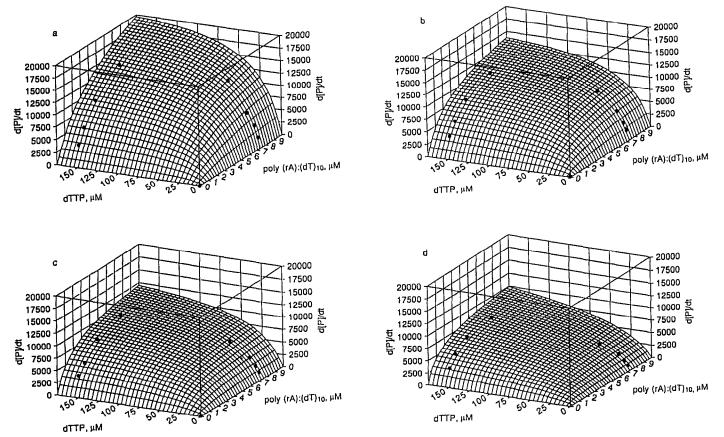


FIG. 3. Inhibition of HIV-1 RT poly(rA): $(dT)_{10}$ -directed poly(dT) synthesis by U-31,355. Enzyme = 0.0274 μ M, $d[P]/dt = \mu$ M × 10⁻⁶ of dTMP incorporated per sec. Key: (a) no inhibitor; (b) 25 μ M, (c) 50 μ M, and (d) 100 μ M U-31,355.

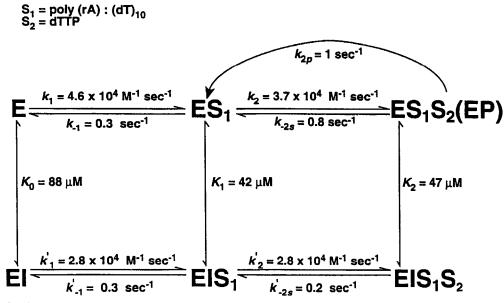


FIG. 4. Inhibition of poly(rA):(dT)₁₀-directed poly(dT) synthesis by U-31,355; steady-state kinetic parameters.

0.2 $\rm sec^{-1}$. The rate of translocation $(k_{\rm 2p})$ or turnover number in the reaction without inhibitor was 0.4 $\rm sec^{-1}$, and the corresponding value, $k'_{\rm 2p}$, for the quaternary enzyme-U-30,355–poly(rC):(dG)₁₀–dGTP complex was essentially zero. The equilibrium constant, K_0 , was 62 μ M U-31,355 for the en-

zyme-inhibitor complex but decreased dramatically to 7.6 μ M for K_1 , the enzyme-inhibitor-template:primer complex, as well as for K_2 , the enzyme-inhibitor-template:primer-dGTP complex. The fitting error was 0.55×10^{-4} for this system. The value for K_0 exceeds the values for K_1 and K_2 by about 8-fold,

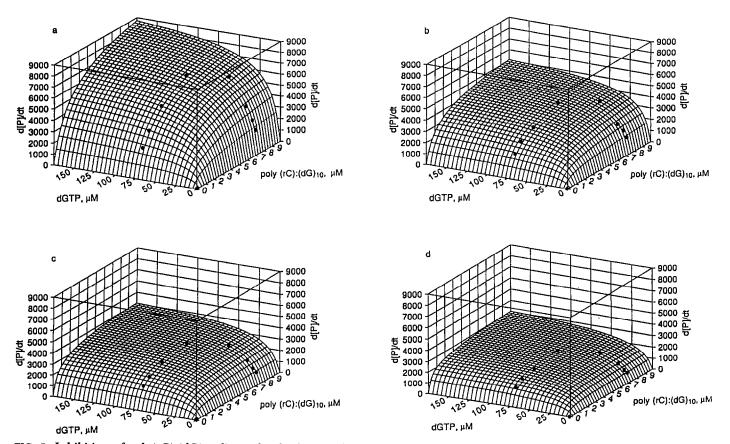


FIG. 5. Inhibition of poly(rC):(dG)₁₀-directed poly(dG) synthesis by U-31,355. Enzyme = 0.0274 μ M, $d[P]/dt = \mu$ M × 10⁻⁶ of dGMP incorporated per sec. Key: (a) no inhibitor; (b) 2.5 μ M, (c) 7.5 μ M, and (d) 15 μ M U-31,355.

748 I. W. Althaus et al.

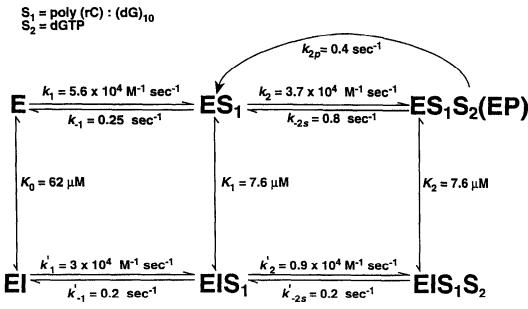


FIG. 6. Inhibition of poly(rC):(dG)₁₀-directed poly(dG) synthesis by U-31,355; steady-state kinetic parameters.

and K_1 is equal to K_2 . This demonstrates that U-31,355 binds much more tightly to the enzyme–substrate complexes than to the free enzyme if the template:primer is poly(rC): $(dG)_{10}$ and the cognate nucleotide is dGTP. The values for K_1 and K_2 were smaller than the corresponding ones obtained with the poly(rA): $(dT)_{10}$ -catalyzed systems where K_1 was 32 μ M and K_2 was 46 μ M, and this demonstrates that the potency of U-31,355 depends on the base composition of the template: primer.

DNA-Directed DNA Polymerase of HIV-1 RT

U-31,355 was also tested for its effect on the DNA-directed DNA polymerase function of RT using poly(dC):oligo(dG) as the template:primer. No inhibition of this enzyme activity was observed with U-31,355 at concentrations up to $100 \mu M$.

RNase H Assay

U-31,355 did not inhibit this RT activity when tested at concentrations up to 100 μM .

Other Retroviral RT Species

The compound was also tested for its inhibitory activity against the RNA-directed DNA polymerase functions of HIV-2 RT, avian myoblastoma virus RT, and murine leukemia virus RT. None of these enzyme species was inhibited by U-31,355 when tested at concentrations up to $100~\mu M$.

DISCUSSION

The inhibition kinetics of U-31,355 on the RNA-directed DNA polymerase of HIV-1 RT were studied with respect to the nucleic acid and dNTP substrate binding sites using homopolymeric template:primers. The analysis of the experimen-

tal results was carried out using a modified Briggs-Haldane kinetic scheme [6]. The rate equation 2 derived for such a reaction system contains thirteen rate and equilibrium constants, as defined in Fig. 2. Equation 2 allows the calculation of these constants as it relates the rate of product formed by the RT enzyme to the two substrates, the template:primer and the dNTP. The turnover numbers k_{2p} or k_{cat} for the RNAdirected polymerase functions ranged from 0.3 to 1 sec⁻¹. Moreover, the equilibrium constants, K_0 , for the enzyme-inhibitor (EI) complexes significantly exceeded the ones for the enzyme-inhibitor-substrate complexes (EIS₁ and EIS₁S₂), although the values for K_1 and K_2 were nearly equal within each system studied. This indicates that U-31,355 possesses a much higher binding affinity for the enzyme-substrate complexes as compared to the free enzyme. In addition, the inhibitor did not compete directly with the template:primer nor the dNTP substrate binding sites of the RT enzyme and acts thus as a mixed inhibitor with respect to the two substrate binding sites. As the values for K_1 and K_2 were nearly equal, it follows that the formation of the binary enzyme-template:primer complex solely accounts for the amplification of the binding affinity of U-31,355, and no further enhancement results following the binding of the second substrate, the dNTP. Moreover, as the functions of the substrate binding sites remain unaffected by U-31,355, the inhibitor must impair an event occurring after the formation of the enzyme-substrate complexes, which includes either the formation of the phosphoester bond or the translocation of the enzyme relative to the template:primer following the generation of the ester bond. The potency of U-31,355 was also dependent on the base composition of the template:primers as the K_i values were much lower for the poly $(rC):(dG)_{10}$ -directed system than for the poly $(rA):(dT)_{10}$ directed one. Moreover, U-31,355 was a specific inhibitor of the RNA-directed DNA polymerase function of HIV-1 RT

and did not inhibit the DNA-catalyzed DNA polymerase. The HEPT analog E-EPU (Fig. 1) was characterized as a noncompetitive inhibitor with respect to the poly (rA):(dT)₁₀ and dGTP binding sites and competitive with respect to the dTTP binding site of the RT enzyme [28]. The specific inhibition patterns for U-31,355 were found to be mixed in that the inhibitor bound much more tightly to the enzyme-substrate complexes than the free enzyme as described in the present study, and these results thus differ significantly from the ones obtained with the HEPT compound E-EPU. In terms of their chemical structures, the two inhibitors differ from each other in that the heterocyclic moiety in E-EPU is 5-ethyl-1-ethoxymethyl-uracil; U-31,355, on the other hand, contains a 4amino-6-chloro-pyrimidine. Focussing on the sulfur substituent, E-EPU contains a phenylthio group whereas U-31,355 contains a benzylthio group.

Kinetic studies with other non-nucleoside HIV-1 RT inhibitors have been described. The benzodiazepine or TIBO compound R82150 appears to be a specific inhibitor of the HIV-1 RT catalyzed RNA-directed DNA polymerase function [12]. The inhibitor acts uncompetitively with respect to the nucleic acid binding site and noncompetitively with respect to the dNTP site. The IC50 for the DNA-directed DNA polymerase was forty times higher than the one required to inhibit the RNA-directed DNA polymerase, and the RNase H activity was not impaired by the inhibitor. The dipyridodiazepinone nevirapine acts as a mixed inhibitor with respect to the poly-(rA):(dT)₁₀ and poly(rC):(dG)₁₀ binding sites and noncompetitively with respect to the dNTP binding sites during RNAdirected DNA synthesis by HIV-1 RT [41]. The pyridinone derivative L-697,639 indicated noncompetitive inhibition with respect to dGTP and poly(rC):(dG)₁₂₋₁₈ [13]. The quinoline U-78,036 acts as a mixed to noncompetitive inhibitor with respect to both the substrate binding sites of the enzyme [14]. Moreover, this compound is a specific inhibitor of the RNA-catalyzed DNA polymerase function of RT as it has no inhibitory effect on the DNA-catalyzed one. We had previously studied the inhibition kinetics of the bis(heteroaryl)piperazines U-87,201E, U-88,204E and U-88,204E and U-90,152E [6-8]. All three compounds share the common property in that they inhibit both the RNA- and DNA-directed DNA polymerase functions of RT but not the RNase H function. Their specific kinetic inhibition patterns differ in some significant ways. U-87,201E acts predominantly as a noncompetitive inhibitor with respect to both substrate binding sites of the enzyme regardless of the template:primer used [6]. U-88,204E acts as a noncompetitive inhibitor if the template:primers are either poly(rA):(dT)₁₀ (RNA-directed DNA polymerase) or poly(C):(dG)₁₂₋₁₈ (DNA-directed DNA polymerase), but it acts as a mixed inhibitor if the template:primer is poly(rC):(dG)₁₀ [7]. U-90,152E, on the other hand, acts as a mixed inhibitor in all the systems tested in that it possesses a higher binding affinity for the enzyme-substrate complexes than for the free enzyme [8].

Compared with these other classes of RT inhibitors, the inhibition kinetics of U-31,355 differ from all of them except for the quinoline U-78,036 [14]. Both compounds act as spe-

cific inhibitors of the RNA-directed DNA polymerase function without any effect on the DNA-catalyzed DNA polymerase or the RNase H domains of the RT enzyme. Moreover, the potency of both inhibitors depends strictly on the base composition of the template:primer in that both compounds show a much higher binding affinity for the enzyme-poly $(rC):(dG)_{10}$ complex than for the enzyme-poly $(rA):(dT)_{10}$ complex. The two compounds differ, however, from each other in regard to their specific inhibition patterns in that the quinoline U-78,036 acts as a noncompetitive to mixed inhibitor with respect to the substrate binding sites of the RNAdirected DNA polymerase, whereas U-31,355 acts as a mixed inhibitor. Hence, although the two compounds differ structurally from each other, they appear to interact within the same general functional domain of the RT enzyme. It should be noted, however, that all of the kinetic data cited, except for the ones obtained with U-31,355, the quinoline U-78,036, the arylpiperazines U-90,152E, U-87,201E, and U-88,204E, were derived from rapid equilibrium kinetics and not Briggs-Haldane kinetics.

This work was supported, in part, by NCDDG HIV Grant AI25696-80. We thank Janet K. Zelenock for editing the text.

References

- Romero DL, Busso ME, Tan CK, Reusser F, Palmer JR, Poppe SM, Aristoff PA, Downey KM, So AG, Resnick L and Tarpley WG, Non-nucleoside reverse transcriptase inhibitors that potently and specifically block human immunodeficiency virus type 1 replication. Proc Natl Acad Sci USA 88: 8806–8810, 1991.
- Romero DL, Morge RA, Genin MJ, Biles C, Busso ME, Resnick L, Althaus IW, Reusser F, Thomas RC and Tarpley WG, Bisheteroarylpiperazine reverse transcriptase inhibitors. J Med Chem 36: 1505–1508, 1993.
- 3. Dueweke TJ, Kezdy FJ, Waszak GA, Deibel MR and Tarpley GW, The binding of a novel bisheteroarylpiperazine mediates inhibition of human immunodeficiency virus type 1 reverse transcriptase. *J Biol Chem* **267**: 27–30, 1992.
- Dueweke TJ, Pushkarskaya SM, Poppe SM, Swaney SM, Zhao JQ, Chen M, Stevenson M and Tarpley WG, A mutation in reverse transcriptase of bisheteroarylpiperazine-resistant HIV-1 that confers increased sensitivity to other non-nucleoside inhibitors. Proc Natl Acad Sci USA 90: 4713–4717, 1993.
- Dueweke TJ, Poppe SM, Romero DL, Swaney SM, So AG, Downey KM, Althaus IW, Reusser F, Busso ME, Resnick L, Mayers DL, Lane J, Aristoff PA, Thomas RC and Tarpley WG, U-90152, a potent inhibitor of human immunodeficiency virus type I replication. *Antimicrob Agents Chemother* 37: 1127–1131, 1993.
- Althaus IW, Chou JJ, Gonzales AJ, Deibel MR, Chou KC, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG and Reusser F, Steadystate kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87,201E. J Biol Chem 268: 6119–6124, 1993.
- Althaus IW, Chou JJ, Gonzales AJ, Deibel MR, Chou K-C, Kezdy FJ, Romero DL, Palmer JR, Thomas RC, Aristoff PA, Tarpley WG and Reusser F, Kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-88204E. Biochemistry 32: 6548–6554, 1993.
- 8. Althaus IW, Chou JJ, Gonzales AJ, Deibel MR, Chou K-C, Kezdy FJ, Romero DL, Thomas RC, Aristoff PA, Tarpley WG and Reusser F, Kinetic studies with the non-nucleoside human immunodeficiency virus type 1 reverse transcriptase inhibitor U-90152E. Biochem Pharmacol 47: 2017–2028, 1994.

750 I. W. Althaus et al.

- Merluzzi VJ, Hargrave KD, Labadia M, Grozinger K, Skoog M, Wu JC, Shih C-K, Eckner K, Hattox S, Adams J, Rosehthal AS, Faanes R, Eckner RJ, Koup RA and Sullivan JL, Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science 250: 1411–1413, 1990.
- Wu JC, Warren TC, Adams J, Proudfoot J, Skiles J, Raghavan P, Perry C, Potocki I, Farina PR and Grob PM, A novel dipyridodiazepinone inhibitor of HIV-1 reverse transcriptase acts through a nonsubstrate binding site. *Biochemistry* 30: 2022–2026, 1991.
- Pauwels R, Andries K, Desmyter J, Schols D, Kukla MJ, Breslin HJ, Raeymaeckers A, Van Gelder J, Woestenborghs R, Heykants J, Schellekens K, Janssen MAC, De Clercq E and Janssen PAJ, Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives. Nature 343: 470–474, 1990.
- 12. Debyser Z, Pauwels R, Andries K, Desmyter J, Kukla M, Janssen PAJ and De Clercq E, An antiviral target on reverse transcriptase of human immunodeficiency virus type 1 revealed by tetrahydro-imidazo[4,5,1-jk][1,4]benzodiazepin-2(1H)-one and -thione derivatives. Proc Natl Acad Sci USA 88: 1451–1455, 1991.
- Goldman ME, Nunberg JH, O'Brien JA, Quintero JC, Schleif WA, Freund KF, Gaul SL, Saari WS, Wai JS, Hoffman JM, Anderson PS, Hupe D and Emini EA, Pyridinone derivatives: Specific HIV-1 reverse transcriptase inhibitors with antiviral activity. Proc Natl Acad Sci USA 88: 6863–6867, 1991.
- Althaus IW, Gonzales AJ, Chou JJ, Romero DL, Deibel MR, Chou KC, Kezdy FJ, Resnick L, Busso ME, So AG, Downey KM, Thomas RC, Aristoff PA, Tarpley WG and Reusser F, The quinoline U-78,036 is a potent inhibitor of HIV-1 reverse transcriptase. J Biol Chem 268: 14875–14880, 1993.
- Mohan P, Singh R and Baba M, Synthesis and antiviral activity of naphthalene-sulfonic acid derivatives against HIV-1 and HIV-2. J Med Chem 34: 212–217, 1991.
- Mohan P, Schols D, Baba M and De Clercq E, Sulfonic acid polymers as a new class of human immunodeficiency virus inhibitors. Antiviral Res 18: 139–150, 1992.
- 17. Gama Sosa M, Fazely F, Koch JA, Vercellotti SV and Ruprecht RM, N-Carboxymethylchitosan-N,O-sulfates as an anti-HIV-1 agent. Biochem Biophys Res Commun 174: 489–496, 1991.
- 18. Baba M, Snoeck R, Pauwels R and De Clercq E, Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including Herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. *Anti*microb Agents Chemother 32: 1742–1745, 1988.
- 19. Baba M, Nakajima M, Schols D, Pauwels R, Balzarini J and De Clercq E, Pentosan polysulfate, a sulfated oligosaccharide, is a potent and selective anti-HIV agent *in vitro*. *Antiviral Res* 9: 335–343, 1988.
- Baba M, Schols D, Pauwels R, Nakashima H and De Clercq E, Sulfated polysaccharides as potent inhibitors of HIV-induced syncytium formation. A new strategy towards AIDS chemotherapy. J Acquir Immune Defic Syndr 3: 493–499, 1990.
- Anand R, Nayyar S, Galvin TA, Merril CR and Bigelow LB, Sodium pentosan polysulfate, an anti-HIV agent also exhibits synergism with AZT, lymphoproliferative activity and virus enhancement. AIDS Res Hum Retroviruses 6: 679–689, 1990.
- 22. Moelling K, Schulze T and Diringer H, Inhibition of human immunodeficiency virus type 1 RNase H by sulfonated polyanions. *J Virol* **63:** 5489–5491, 1989.
- 23. Schols D, Pauwels R, Desmyter J and De Clercq E, Dextran sulfate and other polyanionic anti-HIV compounds specifically interact with viral gp120 glycoprotein expressed in T-cells persistently infected with HIV-1. Virology 175: 556–561, 1990.
- Althaus IW, LeMay RJ, Gonzales AJ, Deibel MR, Sharma SK, Kezdy FJ, Resnick L, Busso ME, Aristoff PA and Reusser F, Enzymatic kinetic studies with the non-nucleoside HIV reverse transcriptase inhibitor U-9843. Experientia 48: 1127–1132, 1992.
- 25. Althaus IW, Chou JJ, Gonzales AJ, LeMay RJ, Deibel MR, Chou

- KC, Kezdy FJ, Romero DL, Thomas RC, Aristoff PA, Tarpley WG and Reusser F, Steady-state kinetic studies with the polysulfonate U-9843, an HIV reverse transcriptase inhibitor. *Experientia* **50:** 23–28, 1994.
- 26. Pauwels R, Andries K, Debyser Z, Van Daele P, Schols D, Stoffels P, De Vreese K, Woestenborghs R, Vandamme A-M, Janssen CGM, Anne J, Cauwenbergh G, Desmyter J, Heykants J, Janssen MAC, De Clercq E and Janssen PAJ, Potent and highly selective human immunodeficiency virus type 1 (HIV-1) inhibition by a series of α-anilinophenylacetimide derivatives targeted at HIV-1 reverse transcriptase. Proc Natl Acad Sci USA 90: 1711–1715, 1993.
- 27. Baba M, Tanaka H, De Clercq E, Pauwels R, Balzarini J, Schols D, Nakashima H, Perno C-F, Walker RT and Miyasaka T, Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative. Biochem Biophys Res Commun 165: 1375–1381, 1989.
- 28. Baba M, De Clercq E, Tanaka H, Ubasawa M, Takashima H, Sekiya K, Nitta I, Umezu K, Nakashima H, Mori S, Shigeta S, Walker RT and Miyasaka T, Potent and selective inhibition of human immunodeficiency virus type 1 (HIV-1) by 5-ethyl-6-phenylthiouracil derivatives through their interaction with the HIV-2 reverse transcriptase. Proc Natl Acad Sci USA 88: 2356–2360, 1991.
- 29. Deibel MR, McQuade TJ, Brunner DP and Tarpley WG, Denaturation/refolding of purified recombinant HIV reverse transcriptase yields monomeric enzyme with high enzymatic activity. AIDS Res Hum Retroviruses 6: 329–340, 1990.
- Chattopadhyay D, Einspahr HM, Brunner DP, Strakalaitis NA, Tarpley WG and Deibel MR, Resolution of microheterogeneity associated with recombinant HIV-1 heterodimeric reverse transcriptase. Protein Expr Purif 3: 151–159, 1992.
- 31. Tan CK, Zhang J, Li AY, Tarpley WG, Downey KM and So AG, Functional characterization of RNA-dependent DNA polymerase and RNase H activities of a recombinant HIV reverse transcriptase. *Biochemistry* 30: 2651–2655, 1991.
- Busso ME and Resnick L, Anti-human immunodeficiency virus effects of dextran sulfate are strain dependent and synergistic or antagonistic when dextran sulfate is given in combination with dideoxynucleosides. Antimicrob Agents Chemother 34: 1991– 1995, 1990.
- Tan CK, Castillo C, So AG and Downey KM, An auxiliary protein for DNA polymerase-δ from fetal calf thymus. J Biol Chem 261: 12310–12316, 1986.
- Chou KC, Graphic rules in steady-state and non-steady state enzyme kinetics. J Biol Chem 264: 12074–12079, 1989.
- 35. Chou KC, Applications of graph theory to enzyme kinetics and protein folding kinetics; steady and non-steady-state systems. *Biophys Chem* **35:** 1–24, 1990.
- 36. Chou KC and Jiang SP, Studies on the rate of diffusion-controlled reactions of enzymes. Sci Sin 17: 664–680, 1974.
- 37. Chou KC, The kinetics of the combination reaction between enzyme and substrate. Sci Sin 19: 505–528, 1976.
- Chou KC and Zhou GP, Role of the protein outside active site on the diffusion-controlled reaction of enzyme. J Am Chem Soc 104: 1409–1413, 1982.
- 39. Cha S, A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state. *J Biol Chem* **243**: 820–825, 1968.
- Chou K-C, Kézdy FJ and Reusser F, Kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem 221: 217–230, 1994
- 41. Tramontano E and Cheng Y-C, HIV-1 reverse transcriptase inhibition by a dipyridodiazepinone derivative: BI-RG-587. Biochem Pharmacol 43: 1371–1376, 1992.